

S.T.E.A.M. fair guidelines

- **Entries MUST** be science/technology/engineering/math-related.
- **Students must make a display** showing what they did. This can be either on white posterboard or a trifold.
- **Write NAME, GRADE, and TEACHER NAME** on the display.
- **Woodmoor PTSA assumes no responsibility for lost or broken items that come to school for the STEAM fair.** Use photos or illustrations for fragile, living, or potentially dangerous materials.
- **Projects** should be brought to the classroom on the morning of **January 30th**. The event will be held in the gym from 6pm-7:30pm. **PLEASE BRING YOUR MATERIALS HOME WITH YOU AFTER!**
- The project and presentation are **the student's responsibility**. This is a fun opportunity for students to learn something new!

Sample trifold layout for a scientific investigation

QUESTION	MATERIALS	RESULTS
BACKGROUND	PROCEDURE	ANALYSIS
HYPOTHESIS	PHOTOS	CONCLUSION

STEAM fair website

Question: What are you curious about? The best questions for the STEAM fair are ones you can easily and safely test at home. Some examples: "Do bread slices mold faster when wet?" "Does exercise make kids better at Memory?" "How does something's weight affect how fast it falls?" Science is a creative field!

Background: What do you know about this subject? Use your experience and do research at the library.

Hypothesis: This is your best guess at an answer. Your hypothesis should be testable with an experiment. Your experiment might show that your hypothesis is false, and that's okay! Scientists learn a lot from unexpected results, and learning is more important than being right.

Materials: What things did you use to run your experiment?

Procedure: This lists the steps of your experiment. It's important you write these out before you start the experiment, and write them so other people could try the experiment too.

Results: What data did you collect from the experiment? What did you observe and measure?

Analysis: Think about your results. What happened? Did this match what you expected? Can you think of anything that may have made the experiment not work like you expect?

Conclusion: What did you learn? Did the experiment show your hypothesis was wrong? Remember, in science, we can't ever say if the hypothesis was correct, only if it was wrong.

Need ideas? There are lots of science fair books at the library and idea online!